Pular para o conteúdo principal

Compartilhe

Namechk, você pode verificar a disponibilidade de um nome de usuário ou domínio em segundos.

Com o Namechk, você pode verificar a disponibilidade de um nome de usuário ou domínio em segundos. Existem 351 milhões de nomes de domínio registrados, e esse número continua crescendo. Todos os dias, milhares de novos nomes são registrados. Como os nomes de domínio só podem ser usados ​​por uma empresa ou pessoa por vez, pode ser difícil não apenas criar um nome de domínio que faça sentido, mas também encontrar um que esteja disponível.  Muita gente não quer perder tempo criando um novo nome de usuário, verificando a disponibilidade e registrando-o em cada plataforma. E se houvesse um jeito mais fácil? Existe. Um verificador e gerador de nomes de usuário como o Namechk  pode ajudar. Como funciona o Namechk? Comece com algumas ideias de nomes e digite cada uma delas na barra de pesquisa. O Namechk pega sua ideia de nome de usuário (mesmo palavras aleatórias) e verifica sua disponibilidade como nome de domínio e nome de usuário em dezenas de redes sociais e plataformas online. ...

Hack Training

Pode ser uma imagem de texto
I💥 AI Tools Hackers Are Using in 2025 (Red-Team & Blue-Team POV)
---
Slide 1 — Hook
AI isn’t just generating images anymore — it’s accelerating hacking.
From automated recon to payload crafting and even full pentest reporting, here’s how attackers (and defenders) are using AI in 2025 — with real examples & how to defend.
---
Slide 2 — WRAITH (AI-Powered Recon Automation)
What it does
Auto-discovers assets, subdomains, tech stack, open ports.
Prioritizes targets using LLM reasoning.
Generates recon → exploit hypotheses.
Example workflow
wraith --target example.com --out recon.json
# Feed recon.json to LLM:
“Suggest top 5 exploit paths from this recon. Rank by impact & ease.”
Why it’s scary: Recon that took hours now happens in minutes, with smarter prioritization.
---
Slide 3 — PentestGPT (LLM for Pentest Planning & Reporting)
Use-cases
Turn raw notes into a structured methodology (OWASP, PTES).
Suggest payloads per finding (SQLi, SSTI, XXE, etc.).
Generate executive + technical reports fast.
Example prompt
You are my senior pentester. Target: api.example.com
Stack: Node.js, GraphQL
Give me:
1) Attack surface checklist
2) High-probability vulns to test
3) Example payloads per vuln
4) Reporting template with risk ratings (CVSS)
---
Slide 4 — BurpGPT (Burp Suite + LLM Payload Brain)
What it does
Reads intercepted requests
Suggests custom payloads (WAF-aware, context-aware)
Helps craft polyglot, obfuscated, or blind-exploitation payloads
Example
Request:
POST /search {"q": "john"}
Prompt to BurpGPT:
“Generate 10 WAF-bypassing SQLi payloads for JSON body with parameter ‘q’. DB type unknown. Also give time-based blind variants.”
---
Slide 5 — X-Bow / Autonomous Pentest Engines
What they do
Chain recon → exploit → validate → write report
Can iterate on responses (e.g., WAF blocks)
Can run multi-step campaigns (dir brute force → SSRF → metadata steal → privilege escalation)
Example high-level flow (pseudo)
xbow --scope scope.txt
→ Asset discovery
→ LFI found → RCE candidate path suggested
→ Exploit validated
→ Draft report with PoC + risk score auto-generated
---
Slide 6 — ShellGPT / Terminal + AI = Lethal
Why it’s useful
Writes bash one-liners for recon, fuzzing, log triage
Summarizes verbose tool output (nmap, nuclei, logs)
Example prompt
I have a wordlist subdomains.txt and want to resolve only live subdomains to alive.txt using httpx. Write a one-liner and explain each flag.
Bonus: Ask it to “fix this exploit script that’s failing on Python 3.12” — instant debugging.
---
Slide 7 — AI-Driven Phishing & MFA Fatigue Campaigns (Defense POV)
Attackers use AI to
Clone writing styles from leaked emails
Auto-generate reverse proxy phishing kits (Evilginx2-like)
Craft localized, hyper-personalized lures
Automate MFA fatigue (“push bombing”) scripts with social engineering scripts
Defend with
FIDO2/WebAuthn (phish-resistant MFA)
Conditional access + impossible travel policies
User-behavior baselines + anomaly detection
---
Slide 8 — AI for Exploit Dev & Patch Diffing
Use-cases
Turn a PoC into a Metasploit module
Explain complex deserialization chains
Diff two versions of source code/binary and ask “What vuln was patched?”
Prompt example
Here’s a failing PoC for CVE-XXXX-YYYY. Fix it for Python 3.12, add argparse, and explain the root cause + exploitation path in comments.
---
Slide 9 — Blue-Team: How to Defend Against AI-Augmented Attackers
1. Phish-resistant MFA (FIDO2, hardware keys).
2. Attack surface monitoring — your own “Wraith” for blue team.
3. LLM-assisted log analysis (explain spikes, rare sequences, failed OAuth flows).
4. Prompt-hardened AI apps — sanitize model inputs, enforce allowlists.
5. Rate-limit & anomaly-detect AI-driven brute-force / fuzzing.
6. Automatic report diffing for repeated exploit vectors from bug bounty submissions.
---
Slide 10 — Ethics, Compliance & Reality
These tools can be weaponized.
Use only on assets you own or have written authorization for.
Always document consent, scope, and reporting responsibly.
LLMs hallucinate — validate every payload & claim.

Comentários

Como usar um Agente OSINT IA

Pericia Digital

Ebook

Postagens mais visitadas